Part Number Hot Search : 
STP16N C5101 15MHZ 1N5271C 12N60 LA716 3209510 MN83951
Product Description
Full Text Search
 

To Download HA12188AF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HA12188AF
Pre-Amplifier and Servo IC for Quadruple-Speed CD-ROM
ADE-207-183(Z) 1st. Edition October 1995 Description
The typical values of built-in capacitances in this IC are reduced 10% compared with those in IC HA12188F. The values of Electrical Characteristics of this IC are same as those of IC HA12188F.
Functions
* RF amplifier * Focus error amplifier * Tracking error amplifier * FOK detector * Mirror detector * Defect detector * APC amplifier * Focus, tracking, and sled servo control * Inner/outer direction detector
Features
* Built-in variable resistors for adjusting tracking error EF balance, tracking gain, and focus gain * Single power supply * Supports double and quadruple speeds * Few external components * FP-56 package
HA12188AF
Block Diagram
VCC 42
41 RS2
40
39
38
37
36
35
34
33 Mirror
32
31 30 29 Defect
RS1 RFS
-+
Bias
FOK
- +
28 LDS 27 CLK 26 DATA
43 RF2 44 45
+
+ -
RF1
- +
FE
Input I/F Logic
25 XLT 24 DC 23 XRST 22 SENS
+ -
APC 46 47
+ - + -
+ -
VR
Output I/F
21 COUT 20 DEFECT or DRT SLM DRIV.
TR1 BAL
48 TR2 49 50
+ -
TM5 TM6 VR
19 SSA
+-
18 VR
51 TE 52 53 54 FA 55
- + + -
-+
17 TM2 TM3 TM4 THS Phase compen. TM7 TSA
-+
TZC
- +
FZC
FS4 56 TM1 DS1 FLS DS2 Focus bias adj. 1 2 3 4 5 6 7 Phase compen. FPS
x2.7
TPS 16 TLS TAC DRIV. FS2
FS1 FSA
-+
x2.7
15 VCC
8
9
10
+
11
12
13
14
FAC DRIV.
* The states of the IC's internal switches at XRST = "L" are shown at block diagram. * The black dot symbol of transfer switch shows on state. * The symbols " " mean connecting to VCC. * The symbols " " mean connecting to pin 45.
Rev.1, Oct. 1995, page 2 of 35
+
HA12188AF
Pin Descriptions and Equivalent Circuits
Pin No. 1 Symbol FH Equivalent Circuit
470 k
Function Focus error hold signal output
3 2
TH TSI
Tracking error hold signal output Tracking servo input
56 4
FSI FLS
90 k
Focus servo input Focus-servo low-frequency filter resistor & capacitor connection (FLS on) Focus-servo low-frequency filter capacitor connection (FLS off) Servo ground Resistor connection for programming focus-servo phase compensation (FPS off) Resistor connection for programming focus-servo phase compensation (FPS on) Focus servo output
5 6 7
FLS SGND FPS --
30 k
8
FPS
9
FSA
20 k
10
FS1
FS1 voltage output
20 k
11
TLS
33 k
Tracking servo low-frequency filter capacitor connection (TLS off)
Rev.1, Oct. 1995, page 3 of 35
HA12188AF
Pin Descriptions and Equivalent Circuits (cont)
Pin No. 12 Symbol TLS Equivalent Circuit
100 k
Function Tracking servo low-frequency filter resistor & capacitor connection (TLS on) Resistor connection for programming tracking servo phase compensation (TPS off) Resistor connection for programming tracking servo phase compensation (TPS on)
13
TPS
14
TPS
15 16
SVCC TSA
--
Servo power supply Tracking servo output
22 k
17
TM2
Sled servo input
18
SSM
SSA amplifier inverting input
19
SSA
Sled servo output
Rev.1, Oct. 1995, page 4 of 35
HA12188AF
Pin Descriptions and Equivalent Circuits (cont)
Pin No. 20 Symbol DRT Equivalent Circuit
VCC 10 k
Function Defect signal output or inner/outer direction signal output
21 22 23
COUT SENS XRST
COUT output SENS output Reset input
24 25 26 27 28
DC XLT DATA CLK LDS
50 k 50 k
DC input XLT input Data input Clock input Laser switch input
29
DFIN
43 k
Defect comparator input
30
DFO
Defect envelope signal output
31
DFH
Defect hold signal output
Rev.1, Oct. 1995, page 5 of 35
HA12188AF
Pin Descriptions and Equivalent Circuits (cont)
Pin No. 32 Symbol FOK Equivalent Circuit
VCC 20 k
Function FOK comparator output
33
MIRH
Mirror hold signal output
100 k
34
RFA
40 k
RF signal AC input
18 k
35
BYPS
20 k
Capacitor connection for ripple filter
36
ISET
Resistor connection for programming reference current
37 38
PGND RFO
--
18 k
Pre-amplifier ground RF signal output
40 k
39
RS1
RS1 switch
Rev.1, Oct. 1995, page 6 of 35
HA12188AF
Pin Descriptions and Equivalent Circuits (cont)
Pin No. 40 Symbol RS2 Equivalent Circuit Function RS2 switch
41
RFM
RFS amplifier inverting input
5k
5k
42 43
PVCC RF1
--
Pre-amplifier power supply RF1 amplifier input
10 k
44 45
RF2 VC
RF2 amplifier input Voltage reference output
20 k
46
MD
APC amplifier input
47
LD
150 k 1k
APC amplifier output
48
TR1
80 k 3.6 p 32 k 20 k 16 k
TR1 amplifier input
49
TR2
TR2 amplifier input
Rev.1, Oct. 1995, page 7 of 35
HA12188AF
Pin Descriptions and Equivalent Circuits (cont)
Pin No. 50 Symbol TEP Equivalent Circuit
22.6 k
Function TE amplifier non-inverting input
51 52
TEM TEO
TE amplifier inverting input TE amplifier output
53
TZC
75 k
TZC comparator input
54
FAM
5.5 k
FA amplifier inverting input
55
FAO
FA amplifier output
Rev.1, Oct. 1995, page 8 of 35
HA12188AF
Operation
1. Microprocessor Control The IC's internal switches can be operated by sending control data from a microprocessor. The signal timing is shown in figure 1, and the control commands are listed in table 1.
DATA T1 CLK
0
1 T2
2
3
4
5
6
7
T3 XLT Item Clock frequency Clock pulse width Delay time Latch pulse width Symbol fCLK T1, T2 T3 T4 Min -- 0.96 1 2 Typ -- -- -- -- Max 520 -- -- --
T4
Unit kHz s s s
Figure 1 Timing Diagram for Microprocessor Control Signals from the microprocessor are input at pins 23 to 27. A low input at the XRST pin resets the IC. Normally this pin should be kept high. (See figure 2.)
27 CLK 26 DATA Input I/F Logic 25 XLT 24 DC 23 XRST 22 SENS Output I/F 21 COUT 20 DEFECT or DRT
Figure 2 Microprocessor Interface
Rev.1, Oct. 1995, page 9 of 35
HA12188AF
Table 1 Microprocessor Control Commands
DATA D2 *1 SENS D1 FS2 FS1 current *5 D0 FS1 FZC
D7D6D5D4 Focus mode Tracking mode and FS1 DRT setting Access control mode 0000
D3 FS4
*2 DEFECT OFF TM7 *4
DRT *3 0 0 0 1 0: Defect 1: Direction 0010
THS
H
See table 2 TM3, TM4 current *6 D3 0 0 1 1 D2 Current value 32A 0 16A 1 24A 0 8A 1 Mirror *7 TM5, TM6 current *6 D1 0 0 1 1 D0 Current value 32A 0 16A 1 24A 0 8A 1 RF
TZC
Pulse setting mode
0011
H
Focus tracking FLS FPS TLS TPS BAL1
Speed setting mode
0100
D3 0 0 1
D2 0 1 1
Mode Normal Double Quadruple BAL2
RS1 RS2
H
EF balance adjustment
0101 0 ; Focus gain 1 ; Tracking gain
BAL0 GF0 GT0
H H H
Tracking gain and focus gain adjustment
GF2 GT2
0110
Notes: 1. The switch name surrounded by circle means that the switch turns on when the corresponding bit is "1". The switch name with bar surrounded by circle means that the switch turns on when the corresponding bit is "0". 2. "DEFECT OFF" means that switches DS1 and DS2 don't turn on when the corresponding bit is "1". Though the "DEFECT OFF" bit is set, the output at pin 20 is defect signal (in defect signal output mode). 3. DRT (pin 20) outputs defect signal when the corresponding bit is "0", and outputs direction signal when the corresponding bit is "1". 4. TM7 can turn on only when COUT is high. 5. The value of two current sources over switch FS1 are 18 A(source) 36 A(sink) when the corresponding bit is "1", and are 9 A(source) 18 A(sink) when the corresponding bit is "0". 6. The current values through switches TM3, TM4, TM5 and TM6 can be selected in four steps. 7. The speed of Mirror circuit can be selected in three steps. Don't use D3 = "1", D2 = "0" mode.
Rev.1, Oct. 1995, page 10 of 35
HA12188AF
Table 2 Access Control Mode
DATA D3 $20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2A $2B $2C $2D $2E $2F 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ST1 ST2 ST3
TM6 TM5 TM4 TM3 TM2 TM1 TM6 TM5 TM4 TM3 TM2 TM1 TM6 TM5 TM4 TM3 TM2 TM1
A circle means that the switch is ON. Note: After the microprocessor sends serial data, TM1 to TM6 can be switched among the states listed under ST1 to ST3 by input at the DC pin. First, if the microprocessor sends serial data when DC is high, TM1 to TM6 are placed in the state listed under ST1. When DC is brought low, the states change to the states listed under ST2. Then if DC is brought high again, the states change to the states listed under ST3.
Rev.1, Oct. 1995, page 11 of 35
HA12188AF
Table 2-A Access Control Mode Appendix
1) Tracking servo
DATA D3 0 0 1 1 D2 0 1 0 1 Tracking servo movement at DC = H (ST1) Servo loop off Servo loop on Servo loop off jump to outside track Servo loop off jump to inside track
2) Sled servo
DATA D1 0 0 1 1 D0 0 1 0 1 Sled servo movement at DC = H (ST1) Servo loop off Servo loop on Servo loop off move to outside track Servo loop off move to inside track
Rev.1, Oct. 1995, page 12 of 35
HA12188AF
2. RF and Focus Error Pre-Amplifiers The main beam output signals from the photodiode IC are led in through resistors at pins 43 and 44. The outputs of amplifiers RF1 and RF2 are summed by amplifier RFS to generate the EFM RF signal. (*1) External resintances of pins 43 and 44 and amplifier RFS should be set according to the pick-up so that the RF signal at pin 38 is about 1.5 VOP (the difference between the peak level of 11T signal component and the voltage at no signal). Switches RS1 and RS2 operate together under microprocessor control. For example they are on for normal or double speed, and off for quadruple speed. ON resistance of RS1 is 1.1k typ and on resistance of RS2 is 530 typ. Figure 3-A shows the frequency characteristic at pin 38 in the condition of figure 3.(Input resistances of pins 43 and 44 are 10k.) External resistances and capacitances should be fitted according to the pick-up. Stray capacitances of board print patterns have influence on this frequency characteristic. Therefore external resistances and capacitances should be set considering stray capacitances. Amplifier FE subtracts the output of amplifier RF2 from the output of amplifier RF1 to generate the focus error signal. The gain is 0dB. The focus error signal is output as the output of amplifier FA at pin 55, with a gain set by variable resistor VR and the external resistance values. With the external resistors in figure 3, the gain of amplifier FA is 8.7dB (initial value after reset). Variable resistor VR is controlled by 3-bit data. The gain can be varied from -5dB to +7dB with respect to the reset value. The focus error signal is binarized by comparator FZC, with a Vth equal to VC + 0.38V. A reference voltage of 1/2 VCC is output at pin 45. The IC's internal reference voltage is connected internally. The feedback resistance of amplifier FA should be set according to the pick-up so that the focus S-curve at pin 55 is about 3V peak-to-peak. Note: 1 The sink current of amplifier RFS is about 1mA. When load capacitance of pin 38 is big because of wiring with CD DSP LSI etc, please use buffer amplifier. (for example emitter follower transistor)
Rev.1, Oct. 1995, page 13 of 35
HA12188AF
1.8 k 22 p VCC 42 8.2 k 1.5 k 24 p 41 RS2 -+ 5k 160 k 43 RF2 44
+
2p 39 RS1 38 RFS
40
8.1 p - + 160 k FE 160 k VR
+ - + -
RF1 5k 10 k 160 k 8.1 p
100
45 54
10 k VC FA - +
+ -
5.5 k
15 k 55
- +
FZC Unit R : C:F
Figure 3 RF and Focus Error Pre-Amplifiers
20
RS1,2 ON Gain
OFF
180 144 108 72 36 0
Phase (deg)
10
Gain (dB)
0
-10
Phase
-36 -72 -108 -144
-20
-30 10k
-180 100k 1M Frequency (Hz) 2M 4M 10M
Figure 3-A Frequency characteristic example of RF preamplifiers
Rev.1, Oct. 1995, page 14 of 35
HA12188AF
5.2 k 12.5 k 27.6 k 9.7 k
GF2 GF1 GF0
Unit R :
Figure 4 Focus VR
Table 3
D2 0 0 0 0 1 1 1 1
Focus VR and Gain
D1 1 1 0 0 1 1 0 0 D0 0 1 0 1 0 1 0 1 VR 9.7k 7.2k 5.5k 4.6k 3.4k 3k 2.7k 2.4k Gain -4.8dB -2.2dB 0dB +1.6dB +3.8dB +4.9dB +6.0dB +6.8dB
Rev.1, Oct. 1995, page 15 of 35
HA12188AF
3. Tracking Pre-Amplifiers The sub-beam outputs from the photodiode IC are led in through resistors at pins 48 and 49. External resistances of pins 48 and 49 and amplifier TE should be set according to the pick-up so that the traverse signal at pin 52 is about 2 VPP. After a reset, the initial value of the feedback resistance BAL from amplifier TR1 to pin 48 is 400k, the same as the feedback resistance from amplifier TR2 to pin 49. BAL has a variable resistance value that is controlled by 4-bit data. The variable range is from -32% to +28% of the reset value. This resistance can be varied to adjust the EF balance of the tracking error. Amplifier TE generates the tracking error signal. Its input signals are received from the preceding stage through variable resistors VR. With the external resistor values in figure 5, after a reset, the initial value of the gain is 8.8dB. The variable VR resistance is controlled by 3-bit data. The gain can be varied from -5dB to +7dB with respect to the reset value. The tracking error signal is coupled through a capacitor to input pin 53 and binarized by comparator TZC, with a Vth equal to VC. (*1) Note: 1 At normal speed the output of amplifier TE contains much EFM signal components. Therefore the output of amplifier TE had better be led in through LPF for reduction of EFM signal components at pin 53.
+ -
TR1 BAL
48 TR2 49 62 k
+ -
3.6 p
VR 400 k
3.6 p
50 51
VR
-+
62 k 52 0.022 53
TE 75 k
+ -
TZC
Unit R : C:F
Figure 5 Tracking Pre-Amplifiers
Rev.1, Oct. 1995, page 16 of 35
HA12188AF
80 k 32 k 20 k 16 k 40 k 80 k 160 k
Unit R :
BAL3 BAL2 BAL1 BAL0
Figure 6 BAL
21.7 k 51.7 k 114 k 40 k
GT2 GT1 GT0
Unit R :
Figure 7 Tracking VR
Table 4
D2 0 0 0 0 1 1 1 1
Tracking VR Values and Gain
D1 1 1 0 0 1 1 0 0 D0 0 1 0 1 0 1 0 1 VR 40k 29.6k 22.6k 18.8k 14.1k 12.5k 11.1k 10.1k Gain -4.9dB -2.3dB 0dB +1.6dB +3.9dB +4.9dB +6.1dB +6.9dB
Rev.1, Oct. 1995, page 17 of 35
HA12188AF
Table 5
D3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
BAL Values
D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 BAL 272k 288k 304k 320k 336k 352k 368k 384k 400k 416k 432k 448k 464k 480k 496k 512k Ratio -32% -28% -24% -20% -16% -12% -8% -4% 0% +4% +8% +12% +16% +20% +24% +28%
4. FOK Detector This detector is a comparator that generates the FOK signal. FOK is one of the signals that determines when to activate the focus servo. When the voltage at pin 38 exceeds the voltage at pin 34 by approximately 0.4V, pin 32 goes high.
0.015 0.015 0.033 34 33 Mirror FOK
- +
32
31 30 29 Defect
Unit C : F
Figure 8 Mirror, FOK, and Defect Detectors
Rev.1, Oct. 1995, page 18 of 35
HA12188AF
5. Defect Detector When a scratched disc is played, the EFM RF signal has the shape shown in figure 9 (a). The defect detector detects the drop-out area of this signal. Scratches with dimensions of about 100m or greater are detected.
;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;
(a) Pin 38
(b) Pin 20
Figure 9 Defect Detector Waveforms 6. Mirror Detector As the pick-up travels across tracks, the EFM RF signal varies as in figure 10 (a). At pin 34, the signal varies as in figure 10 (b). The mirror detector detects the mirror areas. The external capacitor on pin 33 integrates the track-crossing frequency component. The internal time constant of the mirror detector can be set for normal, double, or quadruple speed by microprocessor commands, to raise the trackable range of track-crossing frequencies.
;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;
(a) Pin 38
(b) Pin 34
(c) Mirror signal (internal signal)
Figure 10 Mirror Detector Waveforms
Rev.1, Oct. 1995, page 19 of 35
HA12188AF
7. Bias The 12-k external resistor on pin 36 sets the reference value of the IC's internal bias current. Use only this resistance value. The IC will not operate correctly with other resistance values. Pin 35 is for a bypass capacitor to eliminate noise from the IC's internal bias circuits.
12 k 36 35
0.1
Bias
Unit R : C:F
Figure 11 Bias 8. APC This circuit is for the Psub laser diode. The APC circuit is switched off when pin 28 is high.
APC 46 1k 47
+ -
28 LDS
Unit R :
Figure 12 APC 9. Focus Servo System The focus error signal is led in through a gain-control resistor to pin 56. Focus bias is adjusted at pin 56. When a defect is detected, switch DS2 propagates the focus error signal, which is integrated by an internal resistor and external capacitor. Switch DS2 also inverts the phase of the propagated signal. Switch FS4 is the focus servo loop switch. Switch FLS switches low frequency filter, thereby switching the AC gain of the servo. Switch FPS switches the peak phase-compensation frequency. This switch is linked with switch FLS and tracking servo switches TLS and TPS. For example this switch is off at normal, double speed and is on at quadruple speed. The DC gain from input at pin 56 to output at pin 9 is 19dB. Figure 14 shows the frequency characteristic when pin 4, 5 are open.
Rev.1, Oct. 1995, page 20 of 35
HA12188AF
Switch FS1 switches a current source to generate the focus search voltage. When switch FS2 is switched on, focus is acquired by switching switch FS1 on and off. The current through switch FS1 can be switched in two stages: 36A sink/18A source, and 18A sink/9A source.
18/ 36/ 18 9 20 k FS2 90 k DS2 470 k Focus bias adj. 1 0.1 91 k 0.047 0.047 330 k 330 k FAC DRIV. 4 5 30 k 6 7 150 k FLS Phase compen. FPS 20 k x2.7 8 FS1 7k FSA -+
FS4 56 22 k
9
10
+
10 Unit R : C:F
Figure 13 Focus Servo
50 180
40
Gain
108
30 0 20 Phase
10
-108
0 10
100
1k 2k 4k Frequency (Hz)
10k
-180 100k
Note:
Peak frequency of phase compensation is inversely proportional to external resistance value (330k at this figure) of pin 7, 8.(dot line : $40 mode, solid line : $42 mode)
Figure 14 Focus Servo Frequency Characteristic (pin 4, 5 are open)
Rev.1, Oct. 1995, page 21 of 35
Phase (deg)
Gain (dB)
HA12188AF
The transform function of phase compen block at figure 13 is as follows.
VOUT VIN 8.95 1+j
( 7.9x10 ) I ( ) ) -tan-1 (2.7x10-6)
I = 2.7 I8
-9
1+j (2.7x10-6) 1+j 5.6x10-10 I 7.9x10-9 5.6x10-10 o tan-1 -tan-1 I I
(
)
(
at FPS OFF I7 or I8
I = I7
at FPS ON VCC - 0.71V
External resistance value of pin 7 or 8
10. Tracking Servo System The tracking error signal is led in through a gain-control resistor to pin 2. When a defect is detected, switch DS1 propagates the tracking error signal, which is integrated by an internal resistor and external capacitor. Switch DS1 also inverts the phase of the propagated signal. Switch TM1 is the tracking servo loop switch. Switch TLS switches low frequency filter, thereby switching the AC gain of the servo. The purpose of switch THS is to raise the high-frequency gain. Switch TPS switches the peak phase-compensation frequency. This switch is linked with switch TLS and focus servo switches FLS and FPS. For example this switch is off at normal, double speed and is on at quadruple speed. Switch TM7 is turned on by taking the logical AND of COUT and microprocessor data, to improve the performance of the pick-up. COUT is a signal generated by latching Mirror with both edges of TZC.
TM3 TM4 THS 18 p 100 k
-+
Phase compen.
TM7
TSA
18 p TM1 100 k DS1 100 k 167 k TLS
TPS
22 k 16
TAC DRIV.
x2.7
470 k 2 3
33 k 11 0.1 0.1 12 100 k 0.1 13
15 VCC
14 Unit R : C:F
330 k 330 k
Figure 15 Tracking Servo
Rev.1, Oct. 1995, page 22 of 35
HA12188AF
50 180
40 Gain
108
30
0 20 Phase
10
-108
0 10
100
1k 2k 4k Frequency (Hz)
10k
-180 100k
Note:
Peak frequency of phase compensation is inversely proportional to external resistance value (330k at this figure) of pin 13, 14. (dot line : $40 mode, solid line : $42 mode)
Figure 16 Tracking Servo Frequency Characteristic (pin 11, 12 are open) The transform function of phase compen block at figure 15 is as follows.
VOUT VIN 1+j 4.47 1+j
( 7.9x10 ) I
-10
-9
( 5.6x10 ) I -10 7.9x10-9 -1 ( o tan ) -tan-1 ( 5.6x10 ) I I
at TPS OFF I13 or I14 I = I13 at TPS ON VCC - 0.71V External resistance value of pin 13 or 14 I = 2.7 I14
Rev.1, Oct. 1995, page 23 of 35
Phase (deg)
Gain (dB)
HA12188AF
Figure 17 shows the phase relationships of Mirror, the tracking error, TZC, and COUT. TM7 operates to prevent the moving direction component of the tracking error signal from reaching the actuator. The purpose of switches TM3 and TM4 is to generate the track jump voltage. A positive voltage appears at pin 16 when TM3 is switched on. A negative voltage appears at pin 16 when TM4 is switched on. The current values through switches TM3 and TM4 can be selected in four steps: 8A, 16A, 24A, and 32A. The DC gain from input at pin 2 to output at pin 16 is 13dB. Figure 16 shows the frequency characteristic when pin 11, 12 are open.
Mirror
Tracking error
TZC
COUT (a) Moving inward (b) Moving outward
Figure 17 Phase Relationships of Mirror and Other Signals 11. DRT DRT is an output signal that indicates the inward or outward direction. In the example in figure 18, DRT is low during motion from outer toward inner tracks, and high for motion in the reverse direction. This signal is output from pin 20 on command from the microprocessor.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;; ;;;;;;; ;;;;;; ;;;;;;;;;; ;;;;;; ;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;; ;;;;;;; ;;;;;; ;;;;;;;;;; ;;;;;; ;;;;;; ;;;;;;; ;;;;;;; ;;;;;;; ;;;;;;; ;;;;;; ;;;;;;;;;; ;;;;;; ;;;;;; ;;;;;;;
(moving outward) (moving inward)
RF
DRT
H
L
Figure 18 DRT
Rev.1, Oct. 1995, page 24 of 35
HA12188AF
12. Sled Servo The signal output at pin 16 is passed through a low-pass filter and input at pin 17. TM2 is the loop switch of the sled servo. TM5 and TM6 are current switches that generate voltages for large movements of the sled. A positive voltage appears at pin 19 when TM5 is switched on. A negative voltage appears at pin 19 when TM6 is switched on. The current values through switches TM5 and TM6 can be selected in four steps: 8A, 16A, 24A, and 32A.
SLM DRIV. TM5 TM6 19 SSA
+-
56 k 18 6.8 k 17
22 TM2 on resistsnce 230 typ
TM2
+
82 k
0.22 12 k
Unit R : C:F
Figure 19 Sled Servo 13. Direct Control The switches in the tracking control and sled servo control blocks can be switched on and off by microprocessor commands. TM1 to TM6 can also be controlled directly by the DC pin after input of serial data from the microprocessor. When the microprocessor sends a command from $20 to $2F as serial data with DC high, TM1 to TM6 are placed in the states indicated under ST1 in table 2. Next, when DC is driven low, the states change to ST2. When DC is brought high again, the states change to ST3. Example of using the DC terminal for 1 track jump is as follows. For inside track jump, after sending the $2C at DC = "H", when the TZC's rising edge is detected set DC = "L" and set DC = "H" after a setting time. For outside track jump, after sending the $28 at DC = "H", when the TZC's falling edge is detected, set DC = "L" and set DC = "H" after a setting time.
Rev.1, Oct. 1995, page 25 of 35
HA12188AF
Test Circuit Diagram
S34A 0.1 VIN 34 S34 S38 10 k VCC 42 41 RS2 -+ 40 39 38 12 k 0.1 37 36 35 34 33 Mirror - + S43 RF1 - + FE Input I/F Logic + - + - + - BAL + - TR1 VR Output I/F FOK RS1 RFS Bias 4.7 k S32 0.033 32 31 30 29 Defect 28 27 26 25 24 23 22 21 20 S20 S19 4 k7 TM5 TM6 VR 19 SSA +- 50 62 k 51 39 k S53 62 k S52 52 53 54 39 k S55 56 DS2 DS1 FLS 15 k 55 FS4 TPS TM1 FS2 Phase compen. FPS x2.7 1 S2 200 k VCC VCC S9 4 k7 2 3 4 5 6 7 8 33 k 9 10 11 12 200 k 13 FS1 FSA -+ x2.7 14 VCC 33 k 15 TLS 4 k7 16 S16 S56 FA + - THS Phase compen. TM7 TSA +- TE VR -+ TM2 TM3 TM4 S17 17 5k6 18 51 k 6 k2 10 k S21 10 k VCC S22 10 k 0.015 0.015 VCC
10 k
10 k 43 RF2 44 45
+ - + -
S44
10 k 10
560 APC VCC 2k S48 2SB 561 c 390 k 48 S49 TR2 390 k 49 46 47
TZC - + - FZC +
S60 0.1 VIN 60
S61
V61
Unit R : C:F
Rev.1, Oct. 1995, page 26 of 35
HA12188AF
Absolute Maximum Ratings
Item Power supply voltage Power dissipation Operating temperature Storage temperature Symbol VCC PT Topr Tstg Value 7 550 -20 to +75 -55 to +125 Unit V mW C C
Note: Recommended operating power supply voltage range: 5 0.5V.
Rev.1, Oct. 1995, page 27 of 35
HA12188AF
Electrical Characteristics (Ta = 25C, VCC = 5V)
Item 1.Current dissipation 2.Reference voltage RF amp. 3.Offset voltage 4.Max. output level H 5.Max. output level L 6.Voltage gain Focus error amp. 7.Offset voltage 8.Max. output level H 9.Max. output level L 10.Voltage gain 1 11.Voltage gain 2 Tracking error amp. 12.Offset voltage 13.Max. output level H 14.Max. output level L 15.Voltage gain 1 16.Voltage gain 2 FOK 17.FOK Vth Symbol ICC VC VRF VRFH VRFL GVRF VFA VFAH VFAL GVFAI GVFA2 VTE VTEH VTEL GVTE1 GVTE2 VFOK Min -- 2.3 -65 4.2 -- 10.0 -65 4.0 -- 6.7 6.7 -50 4.0 -- 7.0 7.0 0.25 Typ 36 2.5 0 -- -- 12.0 0 4.5 0.5 8.7 8.7 0 4.5 0.5 9.0 9.0 0.38 Max 52 2.7 65 -- 2.1 14.0 65 -- 1.0 10.7 10.7 50 -- 1.0 11.0 11.0 0.50 Unit mA V mV V V dB mV V V dB dB mV V V dB dB V S49, S52, S61 V61 = 4.0V S48, S52, S61 V61 = 4.0V S49, S60 V52/VIN 60 S48, S60 V52/VIN 60 S34, S61 when V32 4V Min (V38 - V34) S34, S61 S32, S34, S61 S43, S44, S60 S43, S44, S60 S44, S55, S61 V61 = 4.0V S43, S55, S61 V61 = 4.0V S43, S60 V55/VIN 60 S44, S60 V55/VIN 60 S38,S43,S44,S61 V61 = 4.0V S38,S43,S44,S61 V61 = 1.0V S43, S44, S60 V38/VIN 60 Test Conditions No signal I45 = 5mA Pins 15, 42 45 38 38 38 38 55 55 55 55 55 52 52 52 52 52 32
18."H" output voltage 19."L" output voltage Defect 20.Max operation frequency 21.Min operation frequency 22."H" output voltage 23."L" output voltage
VFKH VFKL FDH FDL VDFH VDFL
4.7 -- 2 -- 4.7 --
-- -- -- -- -- --
-- 0.4 -- 1 -- 0.4
V V kHz kHz V V
32 32 20 20 20
S20
20
Note: All offset voltages are values referring to VC (pin 45)at XRST = "L".
Rev.1, Oct. 1995, page 28 of 35
HA12188AF
Electrical Characteristics (Ta = 25C, VCC = 5V) (cont)
Item Defect 24.Operation min input level 25.operation max input level COUT 26.Max operation frequency Symbol VDF1 VDF2 FCO Min 0.75 -- 100 Typ -- -- -- Max -- 2.5 -- Unit VPP VPP kHz Test Conditions S43, S44, S60 S43, S44, S60 S34A, S53, S60 * Mirror Qudruple mode
1
Pins 20 20 21
27."H" output voltage 28."L" output voltage CLK, DATA, XLT, DC, XRST 29."H" input level
VCOH VCOL VMH
4.7 -- 4.0
-- -- --
-- 0.4 --
V V V S21
21 21 23 to 27
30."L" input level APC 32.TZC Vth 33.FZC Vth Focus servo amp. 34.Offset voltage 31.APC voltage
VML VAPC VTZC VFZC VFO
-- 0.09 -40 0.25 -100
-- 0.16 0 0.38 0
1.0 0.23 40 0.50 100
V V mV V mV S53, S61 Refer to V53 S43, S61
23 to 27 46 53 55 9
35.Max output level H 36.Max output level L 37.Voltage gain
VFOH VFOL GVFO
4.0 -- 16.9
4.5 0.8 18.9
-- 1.0 20.9
V V dB
S9, S56, S61 FS4 on, V61 = 1.0V S9, S56, S61 FS4 on, V61 = 4.0V S56, S60 V9/VIN 60 FS4, FLS, FPS on FS2 on V9 - VFO - VC FS2, FS1 on V9 - VFO - VC
9 9 9
38.Search voltage 1 39.Search voltage 2 Tracking servo amp. 40.Offset voltage
VS1 VS2 VTO
-0.70 0.32 -120
-0.51 0.51 0
-0.32 0.70 120
V V mV
9 9 16
41.Max output level H 42.Max output level L
VTOH VTOL
4.0 --
4.5 0.8
-- 1.0
V V
S2, S16, S61 TM1 on, V61 = 1.0V S2, S16, S61 TM1 on, V61 = 4.0V
16 16
Note: 90deg phase differnce between VIN 34 and VIN 60.
Rev.1, Oct. 1995, page 29 of 35
HA12188AF
Electrical Characteristics (Ta = 25C, VCC = 5V) (cont)
Item Tracking servo amp. 43.Voltage gain Symbol GVTO Min 11.4 Typ 13.4 Max 15.4 Unit dB Test Conditions S2, S60 TLS, TPS, TM1 on V16/VIN 60 TM3 on V16 - VTO - VC TM4 on V16 - VTO - VC Pins 16
44.TM3 voltage 45.TM4 voltage Sled servo amp. 46.Offset voltage 47.Max output level H 48.Max output level L 49.Voltage gain 50.TM5 voltage
VTM3 VTM4 VSO VSOH VSOL GVS VTM5
0.51 -0.89 -66 4.0 -- 17.3 0.55
0.71 -0.71 0 4.5 0.8 19.3 0.85
0.89 -0.51 66 -- 1.0 21.3 1.10
V V mV V V dB V
16 16 19
S17, S19, S61 TM2 on V61 = 4.0V S17, S19, S61 TM2 on, V61 = 1.0V S17, S60 TM2 on, V19/VIN 60 16A mode TM5 on V19 - VSO - VC 16A mode TM6 on V19 - VSO - VC
19 19 19 19
51.TM6 voltage
VTM6
-1.10
-0.85
-0.55
V
19
SENS
52."H" output voltage 53."L" output voltage
VSEH VSEL VLDH VLDL GFVR1 GFVR2 GFVR3 GFVR4 GTVR1 GTVR2 GTVR3 GTVR4
4.7 -- 3.5 -- -5.8 -3.2 2.8 5.8 -5.9 -3.3 2.9 5.9
-- -- -- -- -4.8 -2.2 3.8 6.8 -4.9 -2.3 3.9 6.9
-- 0.4 -- 0.5 -3.8 -1.2 4.8 7.8 -3.9 -1.3 4.9 7.9
V V V V dB dB dB dB dB dB dB dB S43, S60 V55 / VIN60 - GVFA1 S43, S60 V55 / VIN60 - GVFA1 S43, S60 V55 / VIN60 - GVFA1 S43, S60 V55 / VIN60 - GVFA1 S48, S60 V52 / VIN60 - GVTE2 S48, S60 V52 / VIN60 - GVTE2 S48, S60 V52 / VIN60 - GVTE2 S48, S60 V52 / VIN60 - GVTE2 S22
22 22 28 28 55 55 55 55 52 52 52 52
LDS
54."H" input voltage 55."L" input voltage
Focus VR
56.VR gain 1 57.VR gain 2 58.VR gain 3 59.VR gain 4
Tracking VR
60.VR gain 1 61.VR gain 2 62.VR gain 3 63.VR gain 4
Rev.1, Oct. 1995, page 30 of 35
HA12188AF
Electrical Characteristics (Ta = 25C, VCC = 5V) (cont)
Item BAL 64.BAL gain 1 65.BAL gain 2 66.BAL gain 3 67.BAL gain 4 68.BAL gain 5 Mirror 69.Operation min input level 70.Operation max input level Symbol GBA1 GBA2 GBA3 GBA4 GBA5 VMI1 VMI2 Min -4.2 -3.7 -3.2 -2.4 1.1 0.25 -- Typ -3.2 -2.7 -2.2 -1.4 2.1 -- -- Max -2.2 -1.7 -1.2 -0.4 3.1 -- 2.5 Unit dB dB dB dB dB VPP VPP Test Conditions S48, S60 V52/VIN60 - GVTE2 S48, S60 V52/VIN60 - GVTE2 S48, S60 V52/VIN60 - GVTE2 S48, S60 V52/VIN60 - GVTE2 S48, S60 V52/VIN60 - GVTE2 S34A, S53, S60 Quadraple mode S34A, S53, S60 Quadraple mode Pins 52 52 52 52 52 21 21
Test Method Notes
Item No. 1 2 3 4, 5 6 7 8, 9 10, 11 12 13, 14 15, 16 17 18, 19 20 21 22, 23 Notes I15 (I15 means "current at pin 15". Following expressions are same as this expression.)+ I42 V45 (V45 means "voltage at pin 45". Following expressions are same as this expression. These symbols mean DC voltage at DC measuring and AC voltage at AC measuring.) V38 - VC V38 20log (V38 / VIN60) VIN60 = 500kHz, 0.2 VPP V55 - VC V55 20log (V55 / VIN60) VIN60 = 4kHz, 0.5 VPP V52 - VC V52 20log (V52 / VIN60) VIN60 = 4kHz, 0.5 VPP (V38 - V34) at the point that V32 exceeds 4V when V61 is lowered from 2.5V. V32 The maximum frequency for VIN60 such that the pin 20 signal is still a square wave. VIN60 = 0.25 VPP + VC + 95mVDC The minimum frequency for VIN60 such that the pin 20 signal is still a square wave. VIN60 = 0.25 VPP + VC + 95mVDC V20
Rev.1, Oct. 1995, page 31 of 35
HA12188AF
Test Method Notes (cont)
Item No. 24 25 26 27, 28 29 30 31 32 33 34 35, 36 37 38, 39 40 41, 42 43 44, 45 46 47, 48 49 50, 51 52, 53 54 55 56 57 58 59 60 61 62 63 Notes The minimum voltage for V38 such that the pin 20 signal is still a square wave. VIN60 = 1kHz + VC + 95mVDC The maximum voltage for V38 such that the pin 20 signal is still a square wave. VIN60 = 1kHz + VC + 95 mVDC VIN60, VIN34 90deg phase difference input signal VIN60 = VIN34 = 1 VPP The maximum frequency for VIN60 (VIN34) such that the pin 21 signal is still a square wave. V21 H input voltage of pin 23 to 27 L input voltage of pin 23 to 27 V46 (V61 - V53) such that V22 exceeds 4V when V61 is upped from 2.4V. (SENS = TZC mode) (V55 - VC) such that V22 exceeds 4V when V61 is upped from 2.5V. (SENS = FZC mode) V9 - VC V9 20log (V9 / VIN60) VIN60 = 1kHz, 0.15 VPP V9 - VFO - VC V16 - VC V16 20log (V16 / VIN60) VIN60 = 1kHz, 0.3 VPP V9 - VTO - VC V19 - VC V19 20log (V19 / VIN60) VIN60 = 4kHz, 0.15 VPP V19 - VSO - VC V22 Input voltage of pin 28 such that APC is off. Input voltage of pin 28 such that APC is on. GF2 = 0, GF1 = 1, GF0 = 0 20log (V55 / VIN60) - GVFA1 VIN60 = 4kHz, 0.5 VPP GF2 = 0, GF1 = 1, GF0 = 1 20log (V55 / VIN60) - GVFA1 VIN60 = 4kHz, 0.5 VPP GF2 = 1, GF1 = 1, GF0 = 0 20log (V55 / VIN60) - GVFA1 VIN60 = 4kHz, 0.5 VPP GF2 = 1, GF1 = 0, GF0 = 1 20log (V55 / VIN60) - GVFA1 VIN60 = 4kHz, 0.5 VPP GT2 = 0, GT1 = 1, GT0 = 0 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5 VPP GT2 = 0, GT1 = 1, GT0 = 1 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5 VPP GT2 = 1, GT1 = 1, GT0 = 0 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5 VPP GT2 = 1, GT1 = 0, GT0 = 1 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5 VPP
Rev.1, Oct. 1995, page 32 of 35
HA12188AF
Test Method Notes (cont)
Item No. 64 65 66 67 68 69 70 Notes BAL3 = 1, BAL2 = 0, BAL1 = 0, BAL0 = 0 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5VPP BAL3 = 1, BAL2 = 0, BAL1 = 0, BAL0 = 1 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5VPP BAL3 = 1, BAL2 = 0, BAL1 = 1, BAL0 = 0 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5VPP BAL3 = 1, BAL2 = 1, BAL1 = 0, BAL0 = 0 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5VPP BAL3 = 0, BAL2 = 1, BAL1 = 1, BAL0 = 1 20log (V52 / VIN60) - GVTE2 VIN60 = 4kHz, 0.5VPP The minimum input voltage for VIN34 such that the pin 21 signal is still a square wave. VIN60 = 1MHz, 1 VPP VIN34 = 100kHz The maximum input voltage for VIN34 such that the pin 21 signal is still a square wave. VIN60 = 1MHz, 1 VPP VIN34 = 100kHz
Rev.1, Oct. 1995, page 33 of 35
HA12188AF
Package Dimensions
Unit: mm
12.8 0.3
10.0 42 29 28
43
12.8 0.3
56 1
0.32 0.08 0.30 0.06
0.13 M
15 14
2.54 Max
0.65
0.775 0.35
0.17 0.05 0.15 0.04
2.20
0.775
1.40
0.1 +0.1 -0.09
0 - 8
0.10
0.60 0.15
Hitachi Code JEDEC Code EIAJ Code Weight FP-56 -- ED-7404A Mod. 0.51 g
Rev.1, Oct. 1995, page 34 of 35
HA12188AF
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Europe GmbH Electronic Components Group Dornacher Strae 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223
Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0
Rev.1, Oct. 1995, page 35 of 35


▲Up To Search▲   

 
Price & Availability of HA12188AF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X